By Topic

Benchmark for radar allocation and tracking in ECM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Blair, W.D. ; Naval Surface Warfare Center, Dahlgren, VA, USA ; Watson, G.A. ; Kirubarajan, T. ; Bar-Shalom, Y.

A benchmark problem for tracking maneuvering targets is presented. The benchmark problem involves beam pointing control of a phased array (i.e., agile beam) radar against highly maneuvering targets in the presence of false alarms (FAs) and electronic counter measurements (ECM). The testbed simulation described includes the effects of target amplitude fluctuations, beamshape, missed detections, FAs, finite resolution, target maneuvers, and track loss. Multiple waveforms are included in the benchmark so that the radar energy can be coordinated with the tracking algorithm. The ECM includes a standoff jammer (SOJ) broadcasting wideband noise and targets attempting range gate pull off (RGPO). The limits on the position and maneuverability of the targets are given along with descriptions of six target trajectories. The “best” tracking algorithm is the one that minimizes a weighted average of the radar energy and radar time, while satisfying a constraint of 4% on the maximum number of lost tracks, The radar model, the ECM techniques, the target scenarios, and performance criteria for the benchmark are presented

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:34 ,  Issue: 4 )