By Topic

Non-linear digital audio processor for dedicated loudspeaker systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A non-linear loudspeaker model, which accurately reproduces the low frequency behavior, is presented. This description, derived from an extension of the well known Small-Thiele (1972) equations, requires far less computational time and memory space than generic non-linear structures. Moreover a noticeable further reduction of the number of operations and of the memory cells required has been achieved by means of a multirate architecture. Inversion of the proposed model allows digital prefiltering of the electrical signal in order to compensate for the non-idealities of the electroacoustic conversion. The above filter structure implemented on a digital signal processor, placed between the audio signal source and the power amplifier allows effective compensation of loudspeaker linear (both magnitude and phase) and non-linear distortion. Measurement results obtained with a commercial woofer are discussed

Published in:

Consumer Electronics, IEEE Transactions on  (Volume:44 ,  Issue: 3 )