By Topic

Bayesian estimation for homogeneous and inhomogeneous Gaussian random fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
R. G. Aykroyd ; Dept. of Stat., Leeds Univ., UK

This paper investigates Bayesian estimation for Gaussian Markov random fields. In particular, a new class of compound model is proposed which describes the observed intensities using an inhomogeneous model and the degree of spatial variation described by a second random field. The coupled Markov random fields are used as prior distributions, and combined with Gaussian noise models to produce posterior distributions on which estimation is based. All model parameters are estimated, in a fully Bayesian setting, using the Metropolis-Hasting algorithm. The full posterior estimation procedures are illustrated and compared using various artificial examples. For these examples the inhomogeneous model performs very favorably when compared to the homogeneous model, allowing differential degrees of smoothing and varying local textures

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:20 ,  Issue: 5 )