By Topic

A new genetic algorithm approach for unit commitment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. H. Mantawy ; Dept. of Electr. Eng., King Fahd Univ. of Pet. & Miner., Dhahran, Saudi Arabia ; Y. L. Abdel-Magid ; S. Z. Selim

This paper presents a new genetic algorithm approach to solve the unit commitment problem in electric power systems. In the proposed algorithm, coding the solution of the unit commitment problem is based on mixing binary and decimal representations. A fitness function is constructed from the total operating cost of the generating units without penalty terms. Genetic operators are implemented to enhance the search speed and to save memory space. The problem under consideration includes two linked subproblems: a combinatorial optimization problem and a nonlinear programming problem. The former is solved using the proposed genetic algorithm while the latter problem is solved via a quadratic programming routine. Numerical results showed an improvement in the solutions costs compared to the results reported in the literature

Published in:

Genetic Algorithms in Engineering Systems: Innovations and Applications, 1997. GALESIA 97. Second International Conference On (Conf. Publ. No. 446)

Date of Conference:

2-4 Sep 1997