By Topic

Parallel genetic algorithms for optimised fuzzy modelling with application to a fermentation process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Soufian ; Mech. Eng., Design & Manuf., Manchester Metropolitan Univ., UK ; M. Soufian

This paper reports the construction and application of an evolution program to a computational intelligence system used as a software `sensor' in state-estimation and prediction of biomass concentration in a fermentation process. A fuzzy logic system (FLS) is used as a computational engine to `infer' the production of biomass from variables easily measured on-line. For this purpose, genetic algorithms (GAs) are employed to train and tune the desired parameters of the fuzzy logic system. It is shown that the fuzzy logic system, which was tuned by two genetic algorithms implemented in parallel, produces better results in prediction of biomass concentration. The mean sum of squared errors and graphical fit are used to compare the performance of the genetically optimised FLS with artificial neural networks (ANN), which is trained using Levenberg-Marquardt second-order nonlinear optimisation method

Published in:

Genetic Algorithms in Engineering Systems: Innovations and Applications, 1997. GALESIA 97. Second International Conference On (Conf. Publ. No. 446)

Date of Conference:

2-4 Sep 1997