By Topic

Recursive implementation of FIR differentiators with optimum noise attenuation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vainio, O. ; Dept. of Inf. Technol., Tampere Univ. of Technol., Finland ; Renfors, M. ; Saramaki, T.

We introduce a computationally efficient recursive implementation of digital finite impulse response (FIR) filters for estimating the rate of change or slope of digitized signals. The proposed FIR differentiator is characterized by the optimal attenuation of white noise and an efficient suppression of upper-band frequencies. The basic structure needs only one multiplier, which becomes a power of two with an appropriate selection of the length of the impulse response. The structure does not need resetting and recovers from any bit errors. For long filters, sampling rate reduction by decimation gives further computational savings

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:46 ,  Issue: 5 )