By Topic

An iterative growing and pruning algorithm for classification tree design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gelfand, S.B. ; Sch. of Electr. Eng., Purdue Univ., West Lafayette, IN, USA ; Ravishankar, C.S. ; Delp, E.J.

A critical issue in classification tree design-obtaining right-sized trees, i.e. trees which neither underfit nor overfit the data-is addressed. Instead of stopping rules to halt partitioning, the approach of growing a large tree with pure terminal nodes and selectively pruning it back is used. A new efficient iterative method is proposed to grow and prune classification trees. This method divides the data sample into two subsets and iteratively grows a tree with one subset and prunes it with the other subset, successively interchanging the roles of the two subsets. The convergence and other properties of the algorithm are established. Theoretical and practical considerations suggest that the iterative free growing and pruning algorithm should perform better and require less computation than other widely used tree growing and pruning algorithms. Numerical results on a waveform recognition problem are presented to support this view

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:13 ,  Issue: 2 )