By Topic

Characterizing distributed shared memory performance: a case study of the Convex SPP1000

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abandah, G.A. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Davidson, E.S.

In a distributed shared memory (DSM) multiprocessor, the processors cooperate in solving a parallel application by accessing the shared memory. The latency of a memory access depends on several factors, including the distance to the nearest valid data copy, data sharing conditions, and traffic of other processors. To provide a better understanding of DSM performance and to support application tuning and compiler development for DSM systems, this paper extends microbenchmarking techniques to characterize the important aspects of a DSM system. We present an experiment-based methodology for characterizing the memory, communication, scheduling, and synchronization performance, and apply it to the Convex SPP1000. We present carefully designed microbenchmarks to characterize the performance of the local and remote memory, producer-consumer communication involving two or more processors, and the effects on performance when multiple processors contend for utilization of the distributed memory and the interconnection network

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:9 ,  Issue: 2 )