By Topic

Multivariate visualization using metric scaling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pak Chung Wong ; Dept. of Comput. Sci., New Hampshire Univ., Durham, NH, USA ; R. D. Bergeron

The authors present an efficient visualization approach to support multivariate data exploration through a simple but effective low dimensional data overview based on metric scaling. A multivariate dataset is first transformed into a set of dissimilarities between all pairs of data records. A graph configuration algorithm based on principal components is then wed to determine the display coordinates of the data records in the low dimensional data overview. This overview provides a graphical summary of the multivariate data with reduced data dimensions, reduced data size, and additional data semantics. It can be used to enhance multidimensional data brushing, or to arrange the layout of other conventional multivariate visualization techniques. Real life data is used to demonstrate the approach.

Published in:

Visualization '97., Proceedings

Date of Conference:

24-24 Oct. 1997