By Topic

A multilevel weighted fuzzy reasoning algorithm for expert systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. S. Yeung ; Dept. of Comput. Sci., Hong Kong Polytech., Kowloon, Hong Kong ; E. C. C. Ysang

The applications of fuzzy production rules (FPR) are rather limited if the relative degree of importance of each proposition in the antecedent contributing to the consequent (i.e., the weight) is ignored or assumed to be equal. Unfortunately, this is the case for many existing FPR and most existing fuzzy expert system development shells or environments offer no such functionality for users to incorporate different weights in the antecedent of FPR. This paper proposes to assign a weight parameter to each proposition in the antecedent of a FPR and a new fuzzy production rule evaluation method (FPREM) which generalizes the traditional method by taking the weight factors into consideration is devised. Furthermore, a multilevel weighted fuzzy reasoning algorithm (MLWFRA) incorporating this new FPREM, which is based on the reachability and adjacent place characteristics of a fuzzy Petri net, is developed. The MLWFRA has the advantages that i) it offers multilevel reasoning capability; ii) it allows multiple conclusions to be drawn if they exist; iii) it offers a new fuzzy production rule evaluation method; and iv) it is capable of detecting cycle rules

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:28 ,  Issue: 2 )