By Topic

Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. R. Giles ; AT&T Bell Labs., Holmdel, NJ, USA ; E. Desurvire

Signal propagation and noise accumulation in lightwave systems using saturated optical amplifiers as repeaters are analyzed. Numerical simulations of amplified spontaneous emission in concatenated erbium-doped fiber amplifiers indicate that a reach beyond 10000 km is possible with a 1.55-μm system in the absence of fiber nonlinearities. Distributed optical amplifiers are shown to have low noise, but require higher pump power than lumped amplifiers. Three operating modes of an amplifier lightwave system are identified and their relative signal power efficiency and noise performance are described

Published in:

Journal of Lightwave Technology  (Volume:9 ,  Issue: 2 )