By Topic

Transient thermal analysis of induction motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rajagopal, M.S. ; Indian Inst. of Technol., Madras, India ; Seetharamu, K.N. ; Ashwathnarayana, P.A.

Induction machines transient thermal analysis has been a subject of interest for electric machine designers in their effort to improve machine reliability and in rotor design optimisation. The study of transient thermal behavior is useful to identify causes of failure in induction machines. This paper presents a 2-D transient analysis of induction machines using the available heat transfer coefficients in literature. A generalised finite element code developed with Galerkin's weighted residual technique is used for analysis. The model is applied to one squirrel-cage totally-enclosed fan cooled machine of 3.7 kW and another surface cooled machine of 5.7 kW. The predicted temperatures compare well with test results. The advantages and limitations of this model are discussed

Published in:

Energy Conversion, IEEE Transactions on  (Volume:13 ,  Issue: 1 )