Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Parallel neural network training on Multi-Spert

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Farber, P. ; Int. Comput. Sci. Inst., Berkeley, CA, USA ; Asanovic, K.

Multi-Spert is a scalable parallel system built from multiple Spert-II nodes which we have constructed to speed error backpropagation neural network training for speech recognition research. We present the Multi-Spert hardware and software architecture, and describe our implementation of two alternative parallelization strategies for the backprop algorithm. We have developed detailed analytic models of the two strategies which allow us to predict performance over a range of network and machine parameters. The models' predictions are validated by measurements for a prototype five node Multi-Spert system. This prototype achieves a neural network training performance of over 530 million connection updates per second (MCUPS) while training a realistic speech application neural network. The model predicts that performance will scale to over 800 MCUPS for eight nodes

Published in:

Algorithms and Architectures for Parallel Processing, 1997. ICAPP 97., 1997 3rd International Conference on

Date of Conference:

10-12 Dec 1997