By Topic

A linearized, low-phase-noise VCO-based 25-GHz PLL with autonomic biasing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
Sadhu, B. ; University of Minnesota, Minneapolis, ; Ferriss, M.A. ; Natarajan, A.S. ; Yaldiz, S.
more authors

This paper describes a new approach to low-phasenoise LC VCO design based on transconductance linearization of the active devices. A prototype 25 GHz VCO based on this linearization approach is integrated in a dual-path PLL and achieves superior performance compared to the state of the art. The design is implemented in 32 nm SOI CMOS technology and achieves a phase noise of - 130 dBc/Hz at a 10 MHz offset from a 22 GHz carrier. Additionally, the paper introduces a new layout approach for switched capacitor arrays that enables a wide tuning range of 23%. More than 1500 measurements of the PLL across PVT variations were taken, further validating the proposed design. Phase noise variation across 55 dies for four different frequencies is σ < 0.6 dB. Also, phase noise variation across supply voltages of 0.7-1.5 V is 2 dB and across 60 °C temperature variation is 3 dB. At the 25 GHz center frequency, the VCO FOMT is 188 dBc/Hz. Additionally, a digitally assisted autonomic biasing technique is implemented in the PLL to provide a phase noise and power optimized VCO bias across frequency and process. Measurement results indicate the efficacy of the autonomic biasing scheme.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:48 ,  Issue: 5 )