By Topic

3D object recognition by neural trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Foresti, G.L. ; Dept. of Math. & Comput. Sci., Udine Univ., Italy ; Pieroni, G.G.

In this paper, a two stage method for 3D object recognition from range images is presented. The first stage extracts local surface features from the input range images. These features are used in the second stage to group image pixels into different surface patches according to the six surface classes proposed by the differential geometry. A neural tree architecture whose nodes are perceptrons without hidden layers and with sigmoidal activation functions is used. A new strategy is proposed to split the training set when it is not linearly separable in order to assure the convergence of the tree learning process. This method has been successfully applied to a large number of synthetic and real images, some of which are presented in the result section

Published in:

Image Processing, 1997. Proceedings., International Conference on  (Volume:3 )

Date of Conference:

26-29 Oct 1997