By Topic

Multidimensional Newton-Raphson consensus for distributed convex optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

In this work we consider a multidimensional distributed optimization technique that is suitable for multi-agents systems subject to limited communication connectivity. In particular, we consider a convex unconstrained additive problem, i.e. a case where the global convex unconstrained multidimensional cost function is given by the sum of local cost functions available only to the specific owning agents. We show how, by exploiting the separation of time-scales principle, the multidimensional consensus-based strategy approximates a Newton-Raphson descent algorithm. We propose two alternative optimization strategies corresponding to approximations of the main procedure. These approximations introduce tradeoffs between the required communication bandwidth and the convergence speed/accuracy of the results. We provide analytical proofs of convergence and numerical simulations supporting the intuitions developed through the paper.

Published in:

2012 American Control Conference (ACC)

Date of Conference:

27-29 June 2012