Cart (Loading....) | Create Account
Close category search window
 

Comprehensive algorithm for hydrothermal coordination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Salam, S. ; Dept. of Electr. Eng., Malaya Univ., Kuala Lumpur, Malaysia ; Nor, K.M. ; Hamdan, A.R.

The authors present a comprehensive hydrothermal co-ordination algorithm where a new Lagrangian relaxation based hydrothermal co-ordination algorithm is integrated into an expert system. In this algorithm, the problem is decomposed into the scheduling of individual units by relaxing the demand and reserve requirements using Lagrangian multipliers. Dynamic programming is used for solving the thermal subproblems without discretising generation levels. Instead of solving the hydro subproblems independently as in the standard Lagrangian relaxation approach, hydrothermal scheduling is used to solve the output levels of hydro units. Hydrothermal scheduling uses the commitment status of thermal units obtained from the solutions of the thermal subproblems The expert system takes care of constraints that are difficult or impractical for implementation in the Lagrangian relaxation based hydrothermal co-ordination algorithm, such as cycling of gas and steam turbine units, etc. It is also applied to check the feasibility of the solution. Extensive constraints such as power balance, spinning reserve, minimum up/down time, must run, capacity limits, ramp rate and hydro constraints are considered. Accurate transmission losses are incorporated. Nonlinear cost function is used, and the hydrothermal scheduling is implemented using a fast and efficient algorithm. Numerical results based on a practical utility data show that this new approach provides feasible schedules within a reasonable time

Published in:

Generation, Transmission and Distribution, IEE Proceedings-  (Volume:144 ,  Issue: 5 )

Date of Publication:

Sep 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.