By Topic

Polarimetric brightness temperatures of sea surfaces measured with aircraft K- and Ka-band radiometers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
S. H. Yueh ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; W. J. Wilson ; F. K. Li ; S. V. Nghiem
more authors

Dual-frequency (19 and 37 GHz), multi-incidence measurements of the Stokes parameters of sea surface microwave emission are reported. A series of aircraft polarimetric radiometer flights were carried out over the National Data Buoy Center (NDBC) moored buoys deployed off the northern California coast in July and August 1994. Measured radiometric temperatures showed a few Kelvin azimuth modulations in all Stokes parameters with respect to the wind direction. Wind directional signals observed in the 37-GHz channel were similar to those in the 19-GHz channel. This indicates that the wind direction signals in sea surface brightness temperatures have a weak frequency dependence in the range of 19-37 GHz. Harmonic coefficients of the wind direction signals were derived from experimental data versus incidence angle. It was found that the first harmonic coefficients, which are caused by the up and downwind asymmetric surface features, had a small increasing trend with the incidence angle. In contrast, the second harmonic coefficients, caused by the up and crosswind asymmetry, showed significant variations in T v and U data, with a sign change when the incidence angle increased from 45° to 65°. Besides the first three Stokes parameters, the fourth Stokes parameter, V, which had never been measured before for sea surfaces, was measured using our 19-GHz channel. The Stokes parameter V. Has an odd symmetry just like that of the third Stokes parameter U, and increases with increasing incidence angles. In summary, sea surface features created by surface winds are anisotropic in azimuth direction and modulate all Stokes parameters of sea surface microwave brightness temperatures by as large as a few Kelvin in the range of incidence angles from 45° to 65° applicable to spaceborne observations

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:35 ,  Issue: 5 )