By Topic

Adaptive filtering for music/voice separation exploiting the repeating musical structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Liutkus, A. ; LTCI, Telecom ParisTech, Paris, France ; Rafii, Z. ; Badeau, R. ; Pardo, B.
more authors

The separation of the lead vocals from the background accompaniment in audio recordings is a challenging task. Recently, an efficient method called REPET (REpeating Pattern Extraction Technique) has been proposed to extract the repeating background from the non-repeating foreground. While effective on individual sections of a song, REPET does not allow for variations in the background (e.g. verse vs. chorus), and is thus limited to short excerpts only. We overcome this limitation and generalize REPET to permit the processing of complete musical tracks. The proposed algorithm tracks the period of the repeating structure and computes local estimates of the background pattern. Separation is performed by soft time-frequency masking, based on the deviation between the current observation and the estimated background pattern. Evaluation on a dataset of 14 complete tracks shows that this method can perform at least as well as a recent competitive music/voice separation method, while being computationally efficient.

Published in:

Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on

Date of Conference:

25-30 March 2012