By Topic

Towards efficient parallel radiosity for DSM-based parallel computers using virtual interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
L. Renambot ; IRISA, Rennes, France ; B. Arnaldi ; T. Priol ; X. Pueyo

The paper presents the performance evaluation of a new technique for radiosity computation which aims at exploiting efficiently the different levels of a memory hierarchy of both sequential and parallel computers. Such ability is essential when dealing with complex environments having several millions of polygons. The principle of the technique is to split the initial environment into several sub-environments and compute the radiosity within each sub-environment. Exchange of energy between sub-environments is performed by means of virtual interfaces and visibility masks. The size of sub-environments can be adapted in order to fit into a cache or a local memory. The authors performed several experiments using an SGI Origin 2000 to show the effectiveness of the solution. It improves both the sequential and parallel execution of a progressive radiosity algorithm. The technique decreases the execution time on one processor of an SGI Origin 2000 by a factor of more than 5 and leads to a very good efficiency for complex environments (1 million of polygons) on a multiprocessor configuration

Published in:

Parallel Rendering, 1997. PRS 97. Proceedings. IEEE Symposium on

Date of Conference:

20-21 Oct 1997