By Topic

A Grid Fundamental and Harmonic Component Detection Method for Single-Phase Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yi Fei Wang ; ATCO Electric, Canadian Utilities Inc., Edmonton, Canada ; Yun Wei Li

Single-phase grid-connected converters are widely used in many applications such as photovoltaics, fuel cells, active power filters, etc. An important topic for the development of their control schemes is ac signal detection, such as grid phase detection for grid-interfacing inverters, and harmonic detection for harmonic compensation devices. Since only one signal is available, the task is more difficult than in three-phase systems. Among the existing methods, the frequency-domain ones are known to have a one-cycle delay and heavier computational burden. Meanwhile, the time-domain methods often rely on phase-locked loop, quadrature signal generation, and complex filtering techniques; the resulted multiple-looped system may suffer from slow transients and stability issues. This paper proposes a new detection method based on anticonjugate harmonic decomposition and cascaded delayed signal cancellation. The method uses constant zero as the quadrature signal, and has a completely open-looped structure. The resulted detection system is very simple and robust. The fundamental and harmonic detection transients can be as short as 0.47 cycle in most cases, or 1.5 cycles for cases with considerable frequency variations. Meanwhile, zero steady-state error can be guaranteed in complicated harmonic scenarios, including all typical single-phase system harmonics. The performance of the proposed detection method is verified by experiments.

Published in:

IEEE Transactions on Power Electronics  (Volume:28 ,  Issue: 5 )