By Topic

Unsupervised Modeling of Player Style With LDA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gow, J. ; Dept. of Comput., Imperial Coll. London, London, UK ; Baumgarten, R. ; Cairns, P. ; Colton, S.
more authors

Computational analysis of player style has significant potential for video game design: it can provide insights into player behavior, as well as the means to dynamically adapt a game to each individual's style of play. To realize this potential, computational methods need to go beyond considerations of challenge and ability and account for aesthetic aspects of player style. We describe here a semiautomatic unsupervised learning approach to modeling player style using multiclass linear discriminant analysis (LDA). We argue that this approach is widely applicable for modeling player style in a wide range of games, including commercial applications, and illustrate it with two case studies: the first for a novel arcade game called Snakeotron, and the second for Rogue Trooper, a modern commercial third-person shooter video game.

Published in:

Computational Intelligence and AI in Games, IEEE Transactions on  (Volume:4 ,  Issue: 3 )