By Topic

Analysis of error detection schemes: Toolchain support and hardware/software implications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Azarian, A. ; FEUP, Univ. do Porto, Porto, Portugal ; Ferreira, J.C. ; Werner, S. ; Petrov, Z.
more authors

Meeting safety requirements typically require substantial invasive extensions to applications. Even in the absence of faults, the overhead associated with these invasive extensions may unacceptably increase execution time. In this paper we focus on a number of experiments with schemes for error detection, having a 3D Path Planning application for an avionics system as case study. We analyze how these error detection schemes can be implemented to meeting system's time budget. The experiments allowed us to acquire the requirements for automating the application of the error detection schemes in the context of a hardware/software design-flow, and to determine how those schemes can be addressed using a novel approach where safety requirements are described using an aspect- and strategy-oriented programming language, named LARA. For our experiments and validation, we consider an FPGA-based embedded system consisting of a general purpose processor (GPP) coupled to custom computing units which are primarily used for hardware acceleration and for implementing fault detection schemes.

Published in:

Adaptive Hardware and Systems (AHS), 2012 NASA/ESA Conference on

Date of Conference:

25-28 June 2012