By Topic

Computing kernels implemented with a wormhole RTR CCM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. A. Bittner ; Dept. of Electr. & Comput. Eng., Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA ; P. M. Athanas

The wormhole run-time reconfiguration (RTR) computing paradigm is a method for creating high performance computational pipelines. The scalability, distributed control and data flow features of the paradigm allow it to fit neatly into the configurable computing machine (CCM) domain. To date, the field has been dominated by large bit-oriented devices whose flexibility can lead to lowered silicon utilization efficiencies. In an effort to raise this efficiency, the Colt CCM has been created based on the wormhole RTR paradigm. This paper outlines methods of implementation and performance for several common operations using these concepts. They serve as indicators of the diversity of algorithms that can be instantiated through the high-speed run-time reconfiguration that these devices make possible. Particular attention is paid to floating point multiplication. Also discussed is the topic of data dependent computation which would seem to be counter intuitive to the wormhole RTR paradigm. The paper concludes with a summary of performance of the three computations

Published in:

Field-Programmable Custom Computing Machines, 1997. Proceedings., The 5th Annual IEEE Symposium on

Date of Conference:

16-18 Apr 1997