Cart (Loading....) | Create Account
Close category search window
 

The 3-D Stacking Bipolar RRAM for High Density

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yi-Chung Chen ; Dept. of Electr. & Comput. Eng., Polytech. Inst. of New York Univ., Brooklyn, NY, USA ; Hai Li ; Wei Zhang ; Pino, R.E.

For its simple structure, high density, and good scalability, the resistive random access memory (RRAM) has emerged as one of the promising candidates for large data storage in computing systems. Moreover, building up RRAM in a 3-D stacking structure further boosts its advantage in array density. Conventionally, multiple bipolar RRAM layers are piled up vertically separated with isolation material to prevent signal interference between the adjacent memory layers. The process of the isolation material increases the fabrication cost and brings in the potential reliability issue. To alleviate the situation, we introduce two novel 3-D stacking structures built upon bipolar RRAM crossbars that eliminate the isolation layers. The bigroup operation scheme dedicated for the proposed designs to enable multilayer accesses while avoiding the overwriting induced by the cross-layer disturbance is also presented. Our simulation results show that the proposed designs can increase the capacity of a memory island to 8K-bits (i.e., eight layers of 32 × 32 crossbar arrays) while maintaining the sense margin in the worst case configuration greater than 20% of the maximal sensing voltage.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:11 ,  Issue: 5 )

Date of Publication:

Sept. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.