By Topic

Semisupervised Multiview Distance Metric Learning for Cartoon Synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun Yu ; Computer Science Department, Xiamen University, Xiamen, China ; Meng Wang ; Dacheng Tao

In image processing, cartoon character classification, retrieval, and synthesis are critical, so that cartoonists can effectively and efficiently make cartoons by reusing existing cartoon data. To successfully achieve these tasks, it is essential to extract visual features that comprehensively represent cartoon characters and to construct an accurate distance metric to precisely measure the dissimilarities between cartoon characters. In this paper, we introduce three visual features, color histogram, shape context, and skeleton, to characterize the color, shape, and action, respectively, of a cartoon character. These three features are complementary to each other, and each feature set is regarded as a single view. However, it is improper to concatenate these three features into a long vector, because they have different physical properties, and simply concatenating them into a high-dimensional feature vector will suffer from the so-called curse of dimensionality. Hence, we propose a semisupervised multiview distance metric learning (SSM-DML). SSM-DML learns the multiview distance metrics from multiple feature sets and from the labels of unlabeled cartoon characters simultaneously, under the umbrella of graph-based semisupervised learning. SSM-DML discovers complementary characteristics of different feature sets through an alternating optimization-based iterative algorithm. Therefore, SSM-DML can simultaneously accomplish cartoon character classification and dissimilarity measurement. On the basis of SSM-DML, we develop a novel system that composes the modules of multiview cartoon character classification, multiview graph-based cartoon synthesis, and multiview retrieval-based cartoon synthesis. Experimental evaluations based on the three modules suggest the effectiveness of SSM-DML in cartoon applications.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 11 )