Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Multimode-oriented polynomial transformation-based defuzzification strategy and parameter learning procedure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tao Jiang ; Sapient Corp., Jersey, NJ, USA ; Yao Li

In an earlier paper (1996), we proposed a set of generalized defuzzification strategies which can be characterized as single-mode-oriented strategies. A single-mode-oriented defuzzification strategy, although useful in many research projects and real world applications, cannot be applied to a multimode situation where two or more distinct possibility peaks exist in its membership function distribution. In this paper, for multimode-oriented generalized defuzzification applications, a multimode-oriented polynomial transformation based defuzzification strategy (M-PTD) is introduced. The new M-PTD strategy, which uses the Kalman filter in parameter learning procedure, offers a constraint-free and self-renewal defuzzification solution

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:27 ,  Issue: 5 )