By Topic

Noise injection into inputs in sparsely connected Hopfield and winner-take-all neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lipo Wang ; Sch. of Comput. & Math., Deakin Univ., Clayton, Vic., Australia

In this paper, we show that noise injection into inputs in unsupervised learning neural networks does not improve their performance as it does in supervised learning neural networks. Specifically, we show that training noise degrades the classification ability of a sparsely connected version of the Hopfield neural network, whereas the performance of a sparsely connected winner-take-all neural network does not depend on the injected training noise

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:27 ,  Issue: 5 )