By Topic

Timing constraints for runtime adaptation in real-time, networked embedded systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Marc Zeller ; Fraunhofer Institute for Communication Systems ESK, Munich, Germany ; Christian Prehofer

In this work, we consider runtime adaptation in networked embedded systems with tight real-time constraints. For such systems, we aim to adapt the placement of software components on networked hardware components at runtime without violating real-time constraints. We develop constraints for such an adaptation process and show the applicability to networked embedded systems like automotive in-vehicle networks. Then, we analyze two approaches for finding solutions in the resulting search space for adaptations, one based on planning algorithms and the other based on constraint solving. While planning approaches start from the current configuration and aim to find a migration sequence and a valid configuration, constraint solving approaches first find solutions and then check for a possible migration sequence. Based on simulations for the automotive domain, we show that approaches based on planning algorithms scale poorly, while constraint solving approaches can find solutions effectively.

Published in:

2012 7th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

Date of Conference:

4-5 June 2012