Cart (Loading....) | Create Account
Close category search window
 

Short-Term Traffic Speed Forecasting Based on Data Recorded at Irregular Intervals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qing Ye ; Dept. of Civil Eng., Univ. of Hong Kong, Hong Kong, China ; Szeto, W.Y. ; Wong, S.C.

Recent growth in demand for proactive real-time transportation management systems has led to major advances in short-time traffic forecasting methods. Recent studies have introduced time series theory, neural networks, and genetic algorithms to short-term traffic forecasting to make forecasts more reliable, efficient, and accurate. However, most of these methods can only deal with data recorded at regular time intervals, which restricts the range of data collection tools to presence-type detectors or other equipment that generates regular data. The study reported here is an attempt to extend several existing time series forecasting methods to accommodate data recorded at irregular time intervals, which would allow transportation management systems to obtain predicted traffic speeds from intermittent data sources such as Global Positioning System (GPS). To improve forecasting performance, acceleration information was introduced, and information from segments adjacent to the current forecasting segment was adopted. The study tested several methods using GPS data from 480 Hong Kong taxis. The results show that the best performance in terms of mean absolute relative error is obtained by using a neural network model that aggregates speed information and acceleration information from the current forecasting segment and adjacent segments.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:13 ,  Issue: 4 )

Date of Publication:

Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.