Cart (Loading....) | Create Account
Close category search window
 

Modeling the Motion of Microrobots on Surfaces Using Nonsmooth Multibody Dynamics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nagy, Z. ; Dept. of Mech. & Process Eng., ETH Zurich, Zurich, Switzerland ; Leine, R.I. ; Frutiger, D.R. ; Glocker, C.
more authors

We apply nonsmooth multibody dynamics to describe the motion of a microrobot which is driven by the wireless resonant magnetic microactuator. We first analyze the robot using a simplified analytical model, which allows us to derive characteristic and nondimensional parameters that describe its dynamics. We then perform a numerical study to analyze the nonlinearities. We predict several nonintuitive phenomena, such as switching of the direction of the velocity with changing excitation frequency, and show that both erratic and controlled motions occur under specific conditions. Our numerical results are qualitatively consistent with experimental observations and indicate that previous speculations on the motion mechanism were incorrect. The modeling method is general and readily applies to other microrobots as well.

Published in:

Robotics, IEEE Transactions on  (Volume:28 ,  Issue: 5 )

Date of Publication:

Oct. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.