By Topic

Online Optimal Control of Affine Nonlinear Discrete-Time Systems With Unknown Internal Dynamics by Using Time-Based Policy Update

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dierks, T. ; DRS Sustainment Syst., Inc., St. Louis, MO, USA ; Jagannathan, S.

In this paper, the Hamilton-Jacobi-Bellman equation is solved forward-in-time for the optimal control of a class of general affine nonlinear discrete-time systems without using value and policy iterations. The proposed approach, referred to as adaptive dynamic programming, uses two neural networks (NNs), to solve the infinite horizon optimal regulation control of affine nonlinear discrete-time systems in the presence of unknown internal dynamics and a known control coefficient matrix. One NN approximates the cost function and is referred to as the critic NN, while the second NN generates the control input and is referred to as the action NN. The cost function and policy are updated once at the sampling instant and thus the proposed approach can be referred to as time-based ADP. Novel update laws for tuning the unknown weights of the NNs online are derived. Lyapunov techniques are used to show that all signals are uniformly ultimately bounded and that the approximated control signal approaches the optimal control input with small bounded error over time. In the absence of disturbances, an optimal control is demonstrated. Simulation results are included to show the effectiveness of the approach. The end result is the systematic design of an optimal controller with guaranteed convergence that is suitable for hardware implementation.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:23 ,  Issue: 7 )