By Topic

Multikernel Adaptive Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yukawa, M. ; Dept. of Electr. & Electron. Eng., Niigata Univ., Niigata, Japan

This paper exemplifies that the use of multiple kernels leads to efficient adaptive filtering for nonlinear systems. Two types of multikernel adaptive filtering algorithms are proposed. One is a simple generalization of the kernel normalized least mean square (KNLMS) algorithm [2], adopting a coherence criterion for dictionary designing. The other is derived by applying the adaptive proximal forward-backward splitting method to a certain squared distance function plus a weighted block l1 norm penalty, encouraging the sparsity of an adaptive filter at the block level for efficiency. The proposed multikernel approach enjoys a higher degree of freedom than those approaches which design a kernel as a convex combination of multiple kernels. Numerical examples show that the proposed approach achieves significant gains particularly for nonstationary data as well as insensitivity to the choice of some design-parameters.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 9 )