Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

A Boundary Condition-Based Approach to the Modeling of Memristor Nanostructures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Corinto, F. ; Dept. of Electron., Politec. di Torino, Turino, Italy ; Ascoli, A.

A deep theoretical discussion proves that in Joglekar's and Biolek's models the memductance-flux relation of a memristor driven by a sign-varying voltage source may only exhibit single-valuedness and multi-valuedness respectively. This manuscript derives a novel boundary condition-based Model for memristor nanostructures. Unlike previous models, the proposed one allows for closed-form solutions. More importantly, subject to the nonlinear behavior under exam, this model enables a suitable tuning of boundary conditions, which may result in the detection of both single-valued and multi-valued memductance-flux relations under certain sign-varying inputs of interest. The large class of modeled dynamics include all behaviors reported in the legendary paper revealing the existence of memory-resistance at the nano scale.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:59 ,  Issue: 11 )