Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Stochastic Modeling-Based Variability Analysis of On-Chip Interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
6 Author(s)

In this paper, a novel stochastic modeling strategy is constructed that allows assessment of the parameter variability effects induced by the manufacturing process of on-chip interconnects. The strategy adopts a three-step approach. First, a very accurate electromagnetic modeling technique yields the per unit length (p.u.l.) transmission line parameters of the on-chip interconnect structures. Second, parameterized macromodels of these p.u.l. parameters are constructed. Third, a stochastic Galerkin method is implemented to solve the pertinent stochastic telegrapher's equations. The new methodology is illustrated with meaningful design examples, demonstrating its accuracy and efficiency. Improvements and advantages with respect to the state-of-the-art are clearly highlighted.

Published in:

Components, Packaging and Manufacturing Technology, IEEE Transactions on  (Volume:2 ,  Issue: 7 )