By Topic

Parametrized Verification of Distributed Cyber-Physical Systems: An Aircraft Landing Protocol Case Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Johnson, T.T. ; Coordinated Sci. Lab., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Mitra, S.

In this paper, we present the formal modeling and automatic parameterized verification of a distributed air traffic control protocol called the Small Aircraft Transportation System (SATS). Each aircraft is modeled as a timed automaton with (possibly unbounded) counters. SATS is then described as the composition of N such aircraft, where N is a parameter from the natural numbers. We verify several safety properties for arbitrary N, the most important of which is separation assurance, which ensures that no two aircraft may ever collide. The verification methodology relies on computing the set of backward reachable states from the set of unsafe states to a fixed point, and checking emptiness of the intersection of these reachable states and the initial set of states. We used the Model Checker Modulo Theories (MCMT) tool, which implements this technique.

Published in:

Cyber-Physical Systems (ICCPS), 2012 IEEE/ACM Third International Conference on

Date of Conference:

17-19 April 2012