By Topic

Facial expression recognition based on geometric and optical flow features in colour image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Niese, R. ; Inst. for Electron., Signal Process. & Commun., Univ. of Magdeburg, Magdeburg, Germany ; Al-Hamadi, A. ; Farag, A. ; Neumann, H.
more authors

Facial expression recognition is a useful feature in modern human computer interaction (HCI). In order to build efficient and reliable recognition systems, face detection, feature extraction and classification have to be robustly realised. Addressing the latter two issues, this work proposes a new method based on geometric and transient optical flow features and illustrates their comparison and integration for facial expression recognition. In the authors' method, photogrammetric techniques are used to extract three-dimensional (3-D) features from every image frame, which is regarded as a geometric feature vector. Additionally, optical flow-based motion detection is carried out between consecutive images, what leads to the transient features. Artificial neural network and support vector machine classification results demonstrate the high performance of the proposed method. In particular, through the use of 3-D normalisation and colour information, the proposed method achieves an advanced feature representation for the accurate and robust classification of facial expressions.

Published in:

Computer Vision, IET  (Volume:6 ,  Issue: 2 )