By Topic

Effects of Iterated Interactions in Multiplayer Spatial Evolutionary Games

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Raymond Chiong ; Department of Computing and Information Systems, University of Melbourne, Parkville, Australia ; Michael Kirley

Mechanisms promoting the evolution of cooperation in two players and two strategies (22) evolutionary games have been investigated in great detail over the past decades. Understanding the effects of repeated interactions in multiplayer spatial games, however, is a formidable challenge. In this paper, we present a multiplayer evolutionary game model in which agents play iterative games in spatial populations. -player versions of the well-known Prisoner's Dilemma and the Snowdrift games are used as the basis of the investigation. These games were chosen as they have emerged as the most promising mathematical metaphors for studying cooperative phenomena. Here, we have adopted an experimental approach to study the emergent behavior, exploring different parameter configurations via numerical simulations. Key model parameters include the cost-to-benefit ratio, the size of groups, the number of repeated encounters, and the interaction topology. Our simulation results reveal that, while the introduction of iterated interactions does promote higher levels of cooperative behavior across a wide range of parameter settings, the cost-to-benefit ratio and group size are important factors in determining the appropriate length of beneficial repeated interactions. In particular, increasing the number of iterated interactions may have a detrimental effect when the cost-to-benefit ratio and group size are small.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:16 ,  Issue: 4 )