By Topic

Experimental evidence of boundary induced coupling currents in LHC prototypes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
L. Bottura ; CERN, Geneva, Switzerland ; L. Walckiers ; Z. Ang

The field quality of 10 m long LHC dipole models has been measured with short rotating coils to explore its dependence on time and position. Multipoles exhibit longitudinal periodic variation, with period equal to the twist pitch length. This periodicity is shown here to have at least two components with very different time constants. The amplitude of the component with the shorter time constant, in the range of 100 to 300 s, depends on position and time. Larger amplitudes are measured at early times after a ramp and close to regions with incomplete cable transposition with respect to the non-uniform external field change. As the multipoles periodicity is due to current imbalance in the cables, we attribute the short time scale variations to the presence of space and time decaying boundary induced coupling currents (BICC's) in the cable. An estimate of their value is given.

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:7 ,  Issue: 2 )