By Topic

H.264/SVC Mode Decision Based on Optimal Stopping Theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tiesong Zhao ; Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong ; Sam Kwong ; Hanli Wang ; C. -C. Jay Kuo

Fast mode decision algorithms have been widely used in the video encoder implementation to reduce encoding complexity yet without much sacrifice in the coding performance. Optimal stopping theory, which addresses early termination for a generic class of decision problems, is adopted in this paper to achieve fast mode decision for the H.264/Scalable Video Coding standard. A constrained model is developed with optimal stopping, and the solutions to this model are employed to initialize the candidate mode list and predict the early termination. Comprehensive simulation results are conducted to demonstrate that the proposed method strikes a good balance between low encoding complexity and high coding efficiency.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 5 )