Cart (Loading....) | Create Account
Close category search window
 

Rotational Machine Health Monitoring and Fault Detection Using EMD-Based Acoustic Emission Feature Quantification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ruoyu Li ; Dept. of Mech. & Ind. Eng., Univ. of Illinois at Chicago, Chicago, IL, USA ; He, D.

Acoustic emission (AE)-signal-based techniques have recently been attracting researchers' attention to rotational machine health monitoring and diagnostics due to the advantages of the AE signals over the extensively used vibration signals. Unlike vibration-based methods, the AE-based techniques are in their infant stage of development. From the perspective of machine health monitoring and fault detection, developing an AE-based methodology is important. In this paper, a methodology for rotational machine health monitoring and fault detection using empirical mode decomposition (EMD)-based AE feature quantification is presented. The methodology incorporates a threshold-based denoising technique into EMD to increase the signal-to-noise ratio of the AE bursts. Multiple features are extracted from the denoised signals and then fused into a single compressed AE feature. The compressed AE features are then used for fault detection based on a statistical method. A gear fault detection case study is conducted on a notional split-torque gearbox using AE signals to demonstrate the effectiveness of the methodology. A fault detection performance comparison using the compressed AE features with the existing EMD-based AE features reported in the literature is also conducted.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:61 ,  Issue: 4 )

Date of Publication:

April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.