Cart (Loading....) | Create Account
Close category search window
 

Maximum Achievable Efficiency in Near-Field Coupled Power-Transfer Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zargham, M. ; Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON, Canada ; Gulak, P.G.

Wireless power transfer is commonly realized by means of near-field inductive coupling and is critical to many existing and emerging applications in biomedical engineering. This paper presents a closed form analytical solution for the optimum load that achieves the maximum possible power efficiency under arbitrary input impedance conditions based on the general two-port parameters of the network. The two-port approach allows one to predict the power transfer efficiency at any frequency, any type of coil geometry and through any type of media surrounding the coils. Moreover, the results are applicable to any form of passive power transfer such as provided by inductive or capacitive coupling. Our results generalize several well-known special cases. The formulation allows the design of an optimized wireless power transfer link through biological media using readily available EM simulation software. The proposed method effectively decouples the design of the inductive coupling two-port from the problem of loading and power amplifier design. Several case studies are provided for typical applications.

Published in:

Biomedical Circuits and Systems, IEEE Transactions on  (Volume:6 ,  Issue: 3 )

Date of Publication:

June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.