By Topic

Rice Phenology Monitoring by Means of SAR Polarimetry at X-Band

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lopez-Sanchez, J.M. ; Dept. of Phys., Syst. Eng. & Signal Theor. (DFISTS), Univ. of Alicante, Alicante, Spain ; Cloude, S.R. ; Ballester-Berman, J.D.

The feasibility of retrieving the phenological stage of rice fields at a particular date by employing coherent copolar dual-pol X-band radar images acquired by the TerraSAR-X sensor has been investigated in this paper. A set of polarimetric observables that can be derived from this data type has been studied by using a time series of images gathered during the whole cultivation period of rice. Among the analyzed parameters, besides backscattering coefficients and ratios, we have observed clear signatures in the correlation (in magnitude and phase) between channels in both the linear and Pauli bases, as well as in parameters provided by target decomposition techniques, like entropy and alpha from the eigenvector decomposition. A new model-based decomposition providing estimates of a random volume component plus a polarized contribution has been proposed and employed in interpreting the radar response of rice. By exploiting the signatures of these observables in terms of the phenology of rice, a simple approach to estimate the phenological stage from a single pass has been devised. This approach has been tested with the available data acquired over a site in Spain, where rice is cultivated, ensuring ground is flooded for the whole cultivation cycle, and sowing is carried out by randomly spreading the seeds on the flooded ground. Results are in good agreement with the available ground measurements despite some limitations that exist due to the reduced swath coverage of the dual-pol HHVV mode and the high noise floor of the TerraSAR-X system.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 7 )