Cart (Loading....) | Create Account
Close category search window
 

An Electric Field Model for Prediction of Somatosensory (S1) Cortical Field Potentials Induced by Ventral Posterior Lateral (VPL) Thalamic Microstimulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Choi, J.S. ; Dept. of Physiol. & Pharmacology, SUNY, Brooklyn, OH, USA ; DiStasio, M.M. ; Brockmeier, A.J. ; Francis, J.T.

Microstimulation (MiSt) is used experimentally and clinically to activate localized populations of neural elements. However, it is difficult to predict-and subsequently control-neural responses to simultaneous current injection through multiple electrodes in an array. This is due to the unknown locations of neuronal elements in the extracellular medium that are excited by the superposition of multiple parallel current sources. We, therefore, propose a model that maps the computed electric field in the 3-D space surrounding the stimulating electrodes in one brain region to the local field potential (LFP) fluctuations evoked in a downstream region. Our model is trained with the recorded LFP waveforms in the primary somatosensory cortex (S1) resulting from MiSt applied in multiple electrode configurations in the ventral posterolateral nucleus (VPL) of the quiet awake rat. We then predict the cortical responses to MiSt in “novel” electrode configurations, a result that suggests that this technique could aid in the design of spatially optimized MiSt patterns through a multielectrode array.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 2 )

Date of Publication:

March 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.