By Topic

A SimPLR method for routability-driven placement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Myung-Chul Kim ; Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, USA ; Jin Hu ; Dong-Jin Lee ; Markov, I.L.

Highly-optimized placements may lead to irreparable routing congestion due to inadequate models of modern interconnect stacks and the impact of partial routing obstacles. Additional challenges in routability-driven placement include scalability to large netlists and limiting the complexity of software integration. Addressing these challenges, we develop lookahead routing to give the placer advance, firsthand knowledge of trouble spots, not distorted by crude congestion models. We also extend global placement to (i) spread cells apart in congested areas, and (ii) move cells together in less-congested areas to ensure short, routable interconnects and moderate runtime. While previous work adds isolated steps to global placement, our SIMultaneous PLace-and-Route tool SimPLR integrates a layer- and via-aware global router into a leading-edge, force-directed placer. The complexity of integration is mitigated by careful design of simple yet effective optimizations. On the ISPD 2011 Contest Benchmark Suite, with the official evaluation protocol, SimPLR outperforms every contestant on every benchmark.

Published in:

Computer-Aided Design (ICCAD), 2011 IEEE/ACM International Conference on

Date of Conference:

7-10 Nov. 2011