By Topic

Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang, J. ; Key Lab. of Meas. & Control of Complex Syst. of Eng., Southeast Univ., Nanjing, China ; Chen, W.-H. ; Li, S.

Robust control of non-linear systems with disturbances and uncertainties is addressed in this study using disturbance observer-based control (DOBC) technique. In this framework, the `disturbance` is a generalised concept, which may include external disturbances, unmodelled dynamics and system parameter perturbations. The existing DOBC methods were only applicable for the case where disturbances and uncertainties satisfy so-called matching condition, that is, they enter the system in the same channel as the control inputs. By appropriately designing a disturbance compensation gain vector in the composite control law, a non-linear disturbance observer-based robust control method is proposed in this study to attenuate the mismatched disturbances and the influence of parameter variations from system output channels. The proposed method is applied to a missile system with non-linear dynamics in the presence of various uncertainties and external disturbances. Simulation shows that, compared with the widely used non-linear dynamic inversion control (NDIC) and NDIC plus integral action methods, the proposed method provides much better disturbance attenuation ability and stronger robustness against various parameter variations.

Published in:

Control Theory & Applications, IET  (Volume:5 ,  Issue: 18 )