By Topic

Decentralized set-valued state estimation and prediction for hybrid systems: A symbolic approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bajcinca, N. ; Max Planck Inst. for Dynamics of Complex Tech. Syst., Magdeburg, Germany ; Kouhi, Y.

A symbolic approach to decentralized set-valued state estimation and prediction for systems that admit a hybrid state machine representations is proposed. The decentralized computational scheme represents a conjunction of a finite number of distributed state machines, which are specified by an appropriate decomposition of the external signal space. It aims at a distribution of computational tasks into smaller ones, allocated to individual distributed state machines, leading to a potentially significant reduction in the overall space/time computational complexity. We show that, in general, such a scheme outerapproximates the state set estimates and predictions of the original monolithic state machine. By utilizing structural properties of the transition relation of the latter, in a next step, we propose constructive decomposition algorithms for a recovery of the exact state set outcomes.

Published in:

System Theory, Control, and Computing (ICSTCC), 2011 15th International Conference on

Date of Conference:

14-16 Oct. 2011