Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bovolo, F. ; Dept. of Inf. Eng. & Comput. Sci., Univ. of Trento, Trento, Italy ; Marchesi, S. ; Bruzzone, L.

The detection of multiple changes (i.e., different kinds of change) in multitemporal remote sensing images is a complex problem. When multispectral images having B spectral bands are considered, an effective solution to this problem is to exploit all available spectral channels in the framework of supervised or partially supervised approaches. However, in many real applications, it is difficult/impossible to collect ground truth information for either multitemporal or single-date images. On the opposite, unsupervised methods available in the literature are not effective in handling the full information present in multispectral and multitemporal images. They usually consider a simplified subspace of the original feature space having small dimensionality and, thus, characterized by a possible loss of change information. In this paper, we present a framework for the detection of multiple changes in bitemporal and multispectral remote sensing images that allows one to overcome the limits of standard unsupervised methods. The framework is based on the following: 1) a compressed yet efficient 2-D representation of the change information and 2) a two-step automatic decision strategy. The effectiveness of the proposed approach has been tested on two bitemporal and multispectral data sets having different properties. Results obtained on both data sets confirm the effectiveness of the proposed approach.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 6 )