By Topic

Image Quality Assessment Based on Gradient Similarity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Anmin Liu ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Weisi Lin ; Narwaria, M.

In this paper, we propose a new image quality assessment (IQA) scheme, with emphasis on gradient similarity. Gradients convey important visual information and are crucial to scene understanding. Using such information, structural and contrast changes can be effectively captured. Therefore, we use the gradient similarity to measure the change in contrast and structure in images. Apart from the structural/contrast changes, image quality is also affected by luminance changes, which must be also accounted for complete and more robust IQA. Hence, the proposed scheme considers both luminance and contrast-structural changes to effectively assess image quality. Furthermore, the proposed scheme is designed to follow the masking effect and visibility threshold more closely, i.e., the case when both masked and masking signals are small is more effectively tackled by the proposed scheme. Finally, the effects of the changes in luminance and contrast-structure are integrated via an adaptive method to obtain the overall image quality score. Extensive experiments conducted with six publicly available subject-rated databases (comprising of diverse images and distortion types) have confirmed the effectiveness, robustness, and efficiency of the proposed scheme in comparison with the relevant state-of-the-art schemes.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 4 )