Cart (Loading....) | Create Account
Close category search window
 

A New Human Identification Method: Sclera Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhi Zhou ; Dept. of Electr. & Comput. Eng., Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, IN, USA ; Du, E.Y. ; Thomas, N.L. ; Delp, E.J.

The blood vessel structure of the sclera is unique to each person, and it can be remotely obtained nonintrusively in the visible wavelengths. Therefore, it is well suited for human identification (ID). In this paper, we propose a new concept for human ID: sclera recognition. This is a challenging research problem because images of sclera vessel patterns are often defocused and/or saturated and, most importantly, the vessel structure in the sclera is multilayered and has complex nonlinear deformations. This paper has several contributions. First, we proposed the new approach for human ID: sclera recognition. Second, we developed a new method for sclera segmentation which works for both color and grayscale images. Third, we designed a Gabor wavelet-based sclera pattern enhancement method to emphasize and binarize the sclera vessel patterns. Finally, we proposed a line-descriptor-based feature extraction, registration, and matching method that is illumination, scale, orientation, and deformation invariant and can mitigate the multilayered deformation effects and tolerate segmentation error. The experimental results show that sclera recognition is a promising new biometrics for positive human ID.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:42 ,  Issue: 3 )
Biometrics Compendium, IEEE

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.